

Journal of Arts & Humanities

Volume 15, Issue 01, 2026: 09-17
Article Received: 28-06-2025
Accepted: 15-11-2025
Available Online: 03-01-2026
ISSN: 2167-9045 (Print), 2167-9053 (Online)
DOI: <http://dx.doi.org/10.18533/journal.v15i1.2586>

Color-Coded BOPPPS: A culturally Augmented AR Framework for Chinese Ballroom Dance Education

Li Yuanxin¹, Leng Poh Gee²

ABSTRACT

Background: The Chinese ballroom dancing curriculum struggles to integrate Western technical methods with Eastern cultural principles, often overlooking aesthetic harmony and symbolic significance inherent in Chinese traditions.

Intervention: This study introduces Color-Coded BOPPPS, a pedagogical framework that incorporates Chinese color symbolism (rooted in Wuxing theory) into the BOPPPS model, enhanced by augmented reality (AR) for real-time feedback. The Color-Step Mapping Matrix (CSMM) associates dance movements with culturally meaningful colors, dynamically adjusting AR overlays based on dancer performance.

Key Results: A 12-week experiment with 120 college students compared three approaches: traditional, Western color-coded, and culturally augmented. The culturally augmented group exhibited a 32.7% reduction in positional errors and 87.3% accuracy in color-step recall.

Significance: This framework enhances technical proficiency and cultural awareness, promoting culturally sensitive teaching practices with implications for arts education policy in China.

Keywords: Dance pedagogy, BOPPPS model, Augmented reality, Chinese color symbolism, Cultural education.
This is an open access article under Creative Commons Attribution 4.0 License.

1. Introduction

In China, teaching ballroom dancing is hard because of the complicated relationship between Western technical rigor and Eastern cultural values. This is made further worse by the fact that dance styles based on European traditions are becoming more popular around the world (Yu, 2014). Chinese teachers need to change standard methods to fit local needs that focus on aesthetic harmony, emotional expressiveness, and symbolic significance, which are often missing from traditional teaching (Warburton, 2019). Traditional dance lessons break down steps into abstract movement patterns, missing culturally relevant clues that could help learning through dual coding, which is when visual and

¹ Department of Performing Arts, Faculty of Music and Performing Arts, Universiti Pendidikan Sultan Idris (UPSI), Malaysia, Email: laierlaapply25@gmail.com

² Head of Department, Department of Performing Arts, Faculty of Music and Performing Arts, Universiti Pendidikan Sultan Idris (UPSI), Malaysia, Email: lengpohgee@fmsp.upsi.edu.my

kinesthetic channels work together to help recall (Cook, 2006). The Five Elements theory (Wuxing) gives colors deep emotional and cosmological implications in China. This makes it a great way to use visuals in education (Wang, 2002). For instance, red stands for passion and life, while gold stands for elegance, which is similar to how dances like the Tango and Waltz express themselves.

The BOPPPS paradigm, which stands for Bridge, Objective, Pre-assessment, Participatory Learning, Post-assessment, and Summary, has become popular in Chinese higher education since it provides a structured way to learn new skills (Liu et al., 2022). It is widely used in cognitive areas such as physiology and language education, but its possible uses in psychomotor areas such as dance are still not fully understood, especially in culturally adaptable settings (Fei, 2024). This paper talks about Color-Coded BOPPPS, a new way to improve Chinese ballroom dance lessons by combining a Color-Step Mapping Matrix (CSMM) with AR-based feedback. By linking dance moves to colors that are important in Chinese culture, the framework makes it easier for students to understand, encourages them to get emotionally involved, and fits with Chinese aesthetic traditions. This fills a major vacuum in dance education.

Our research questions are: (1) Does culturally grounded color coding improve technical accuracy and learning efficiency in dance education? (2) Can it enhance cultural literacy alongside motor skills? Key findings demonstrate a 32.7% reduction in positional error and 87.3% color-step recall accuracy compared to traditional methods. Contributions include a culturally adaptive visual system, AR-enhanced BOPPPS phases, and cultural resonance metrics for assessment. This work synthesizes technical proficiency with cultural meaning-making, offering a scalable model for arts education in China and beyond.

The paper is structured as follows: Section 2 reviews literature on BOPPPS, visual coding, cultural symbolism, and technology-enhanced pedagogy. Section 3 details the methodology, including CSMM construction, AR feedback, and experimental design. Section 4 presents results and discussion, and Section 5 concludes with policy implications for Chinese education.

The BOPPPS model, comprising six phases—Bridge, Objective, Pre-assessment, Participatory Learning, Post-assessment, and Summary—has become a cornerstone of Chinese higher education pedagogy (Liu et al., 2022). Its structured approach ensures clear learning objectives and active student engagement, as demonstrated in physiology education, where hybrid teaching models improved student outcomes (Liu et al., 2022). In music education, blended learning environments integrated BOPPPS with digital tools to enhance piano instruction, leveraging the participatory learning phase for hands-on practice (Yue & Chen, 2022). Similarly, English language courses used visual scaffolding during participatory learning to boost engagement, suggesting adaptability for psychomotor tasks (Fei, 2024). Despite its success in cognitive domains, BOPPPS applications in movement-based education, such as dance, are scarce. The model's flexibility in incorporating multimodal feedback, including visual and technological aids, positions it as an ideal foundation for culturally adaptive dance pedagogy. Recent studies further underscore BOPPPS's potential in dance, with online dance instruction trends showing increased adoption of structured models like BOPPPS amid digital shifts (Li et al., 2025). Additionally, research on injury prevention in adolescent dancers highlights the need for integrated pedagogical models in dance education to address physical and developmental challenges (Kolokythas, 2023).

Visual coding, particularly through color-based cues, enhances comprehension in movement education. Early studies in special education showed that chromatic cues improve understanding for diverse learners, reducing cognitive load (Linz, 1955). In dance, color-coding has been explored in Western contexts to annotate choreography, though without cultural grounding (Vassileva, 2024). Chinese calligraphy education offers a compelling parallel, where real-time visual feedback systems improved stroke precision by 22–35%, suggesting potential for dance movement refinement (Shichinohe et al., 2010). The LantemOperAR project used culturally significant colors to deepen engagement with Chinese performing arts, but focused on audience experience rather than skill acquisition (Chen et al., 2024). Process-based learning in Tai Chi further illustrates how visualization scaffolds complex motor sequences, aligning with Chinese educational traditions that emphasize contextualized learning (Yang & Lin, 2016). These studies highlight a gap in dynamic, culturally grounded visual feedback systems for dance pedagogy. Recent advancements in AI for dance education emphasize visual tools' role in creativity and choreography, providing parallels for color-coded systems (Dourish & Bellotti, 2024).

Chinese color symbolism, rooted in the Five Elements theory (Wuxing), assigns emotional and cosmological meanings to hues, shaping aesthetic practices in performing arts (Wang, 2002). Red, associated with fire, signifies passion and vitality, as seen in Yangge dance, while blue-green (qing), linked to wood, represents growth and calm in meditative movements (You, 2016). Historical records from the Tang Dynasty document chromatic patterns in court performances to convey narrative progression, establishing a precedent for semantic color coding in movement arts (Jendan & Lee, 2012). Contemporary surveys confirm these associations, with 78% of Chinese respondents linking colors to specific emotional responses in performance contexts (Gao et al., 2007). This cultural framework contrasts with Western dance pedagogies, which often prioritize verbal correction over symbolic scaffolding (Schupp, 2024). Integrating color symbolism into dance education could bridge technical and cultural learning, enhancing both proficiency and aesthetic appreciation.

Symbolic interaction theory posits that culturally shared symbols mediate learning by reducing cognitive load by 30–40% compared to verbal instruction (Aksan et al., 2009). In dance, color cues as symbolic mediators can enhance motor skill acquisition by activating visual and kinesthetic channels, a process supported by dual coding theory (Cook, 2006). Neuroimaging studies show that color-movement associations engage the fusiform gyrus (color processing) and premotor cortex, strengthening neural pathways for movement recall (De Valois & De Valois, 1997). This aligns with Chinese educational traditions that emphasize process-oriented learning, as seen in calligraphy and Tai Chi (Yang & Lin, 2016). Multisensory learning, combining visual and motor feedback, has shown promise in sports training, where AR-based color-coding corrects form, though without cultural adaptation for Chinese learners (Soltani & Morice, 2020). For instance, Western approaches like Labanotation focus on geometric abstractions without cultural semantics, whereas our model embeds symbolic meanings to foster deeper engagement (Raheb et al., 2021). Integrating color symbolism into dance education could bridge technical and cultural learning, enhancing both proficiency and aesthetic appreciation. Cross-cultural studies highlight how such integrations promote cultural competence, as seen in arts education programs blending diverse traditions (Smith & Johnson, 2024). Recent work on dance as a metaphor for intercultural dialogue further supports this, showing how arts-based learning develops interculturality among preservice teachers (Ganesan, 2024).

Augmented reality has transformed dance education by providing real-time feedback. Systems like MotionGPT synthesize motion to guide learners, though they prioritize technical accuracy over cultural meaning (Siyao et al., 2023). In Chinese educational technology, projects preserving embroidery and opera integrate digital tools while maintaining cultural authenticity, demonstrating the potential for culturally grounded systems (Yan & Chiou, 2021). The cultural consensus model offers a methodological approach to derive color-semantic mappings, though its application to dynamic movement systems is novel (Garcia et al., 2020). Labanotation-derived visual aids have been used to teach dance, but lack the interactivity of AR systems (Raheb et al., 2021). Recent advancements in motion capture, such as Vicon systems, enable precise movement analysis, supporting the development of feedback-driven pedagogies (Schlagenhauf et al., 2018). These technologies underscore the potential to bridge technical and cultural dimensions in dance education.

Current dance pedagogy lacks frameworks that integrate culturally adaptive visual coding with structured pedagogical models. We hypothesize that embedding Chinese color symbolism within the BOPPPS framework, supported by AR feedback, will enhance technical proficiency and cultural literacy. This hypothesis is grounded in symbolic interaction theory, dual coding, and the efficacy of visual feedback in Chinese movement arts, addressing gaps in both technical and cultural education.

2. Data and methodology

The CSMM establishes a bijective mapping between dance steps ($\mathcal{S} = \{s_1, \dots, s_n\}$) and colors ($\mathcal{C} = \{c_1, \dots, c_m\}$), characterized by kinematic parameters (e.g., velocity, curvature, angular displacement) and cultural attributes (e.g., emotional valence, historical significance). The color palette derives from the Five Elements theory, with each color (c_j) assigned symbolic weights ($\mathbf{W}(c_j) = [w_1, \dots, w_k]$) across cultural dimensions (e.g., passion, elegance, vitality). The mapping function minimizes cultural-semantic distance using Euclidean distance:

$$\text{CSMM}(s_i) = \text{argmin}_{c_j} \| A(s_i) - W(c_j) \|_2 \quad \text{Eq. (01)}$$

For Tango's forward ocho ((s_{ocho})), $\text{red}(c_{\text{red}})$) is selected due to high alignment in passion (0.87) and intensity (0.79), validated by cultural surveys (Gao et al., 2007). The CSMM construction involved a three-stage process: (1) ethnographic studies of Chinese dance aesthetics, interviewing 50 instructors and performers; (2) cultural consensus modeling to quantify color-step associations, involving 200 university students; and (3) iterative refinement with 10 dance instructors to ensure pedagogical relevance (Garcia et al., 2020). The resulting matrix includes 128 verified mappings, stored in a database system designed to handle detailed color representations for accurate rendering.

The feedback system operates through a closed-loop architecture with three computational layers:

1. Motion Capture: Fuses inertial measurement units (IMUs, 100 Hz) and RGB-D cameras (120 Hz) to estimate student pose (\tilde{P}_t). A Kalman filter achieves 4.2ms latency, ensuring real-time processing (Schlagenhauf et al., 2018).

2. Cultural Alignment: Computes deviation (Δ_t) from reference motion (P_t^*) using a MotionGPT-3S engine fine-tuned on Chinese ballroom datasets:

$$\Delta_t = \frac{1}{N} \sum_{k=1}^N \| \tilde{P}_t^{(k)} - P_t^{*(k)} \|_2 \quad \text{Eq. (02)}$$

2. Rendering: Modulates AR color intensity (I_t):

$$I_t = \alpha \cdot \left(1 - \frac{\Delta_t}{\Delta_{\text{max}}}\right) + (1 - \alpha) \cdot \text{CSMM}(s_i)_{\text{salience}} \quad \text{Eq. (03)}$$

where balances technical and cultural feedback, and sets the error threshold based on pilot studies with 30 students. This equation adjusts the color's brightness based on how much the dancer deviates from the ideal, providing visual hints for correction. The system uses Microsoft HoloLens 2 for projections, calibrated to 2° visual angle accuracy with 16,384 hue gradations, ensuring precise color discrimination. Calibration involved adjusting for studio lighting conditions to maintain color fidelity, with a maximum deviation of 5% in hue accuracy.

Each BOPPPS phase integrates color coding to enhance learning:

- Bridge: Historical dance footage is filtered with CSMM-aligned colors (e.g., azure for Waltz rotations) to contextualize cultural significance, drawing on Tang Dynasty precedents (Jendan & Lee, 2012). Footage was sourced from archival records and curated by dance historians.

- Objective: Defines learning goals linking technical steps to cultural meanings, such as associating gold with Waltz elegance.

- Pre-assessment: Students match color swatches to dance style emotions (e.g., red for Tango passion), serving as a diagnostic tool for cultural literacy. Tasks were designed based on cognitive psychology principles (Cook, 2006).

- Participatory Learning: AR projectors render step-specific hues on studio floors (e.g., gold for Waltz box step), fading when foot placement exceeds 5 cm tolerance, replacing verbal counting with visual feedback. Projectors were calibrated to cover a 10x10m studio space.

- Post-assessment: Motion replays display color gradients indicating deviation magnitude, enabling self-correction. Replays were generated using the Biomechanics Toolkit (Dixon et al., 2017).

- Summary: Reflective exercises, including quizzes and group discussions, reinforce color-step associations.

These adaptations were iteratively tested with 15 dance instructors over three months, ensuring alignment with pedagogical goals and cultural authenticity. Instructor feedback led to adjustments in color intensity and projection timing to optimize learner engagement.

Performance scores combine technical accuracy and cultural knowledge:

$$\text{Score} = \beta \cdot \text{Technical}(\Delta_{1:T}) + (1 - \beta) \cdot \text{Cultural}(\text{CSMM}, E) \quad \text{Eq. (04)}$$

where ($\beta = 0.7$) prioritizes technical mastery, and (E) measures color-step recall accuracy:

$$E = \frac{1}{|S|} \sum_{i=1}^{|S|} \mathbb{I}(\text{StudentLabel}(s_i) = \text{CSMM}(s_i)) \quad \text{Eq. (05)}$$

Cultural metrics derive from 128 verified color-dance associations, validated through surveys with 300 respondents and instructor feedback (Gao et al., 2007). The scoring rubric was calibrated using a pilot study with 20 students, optimizing (β) to balance technical and cultural dimensions. Assessments included computer-adaptive quizzes scored via item response theory to ensure reliability (Wang, 2024).

The system architecture comprises:

- Motion Capture: 12-camera Vicon MX40 array (100 Hz) synchronized with 7-axis IMU suits, generating 2.3TB of .c3d files processed via MATLAB R2022a (Dixon et al., 2017).
- AR Devices: HoloLens 2 units with 60 Hz color updates and 10ms latency.
- Data Collection: 5,760 survey responses via WeChat Mini Programs, 1,440 performance videos, and

computer-adaptive cultural quizzes, synchronized to ± 5 ms via NTP timestamps.

Figure 1. AR projection interface.

Wearable subsystems include IMUs and head-mounted displays for real-time color corrections. For Waltz's natural turn, azure blue ((c_{azure})) adjusts saturation based on spin accuracy from gyroscopic data, enhancing precision. The system was tested in three university studios, with environmental controls to minimize light interference.

We recruited 120 students (60 male, 60 female, 18–22 years) from three Chinese universities, stratified by Dance Proficiency Index scores (Chatfield, 2009). Participants were randomized into three groups ($n=40$ each): Traditional BOPPPS, Western Color-Coded (generic colors, Vassileva, 2024), and Culturally Augmented. The 12-week study involved Waltz and Tango choreography across 90-minute sessions, with matched instructor expertise. A double-blind design ensured impartiality.

The experimental setup included:

- Motion Capture: 12-camera Vicon MX40 array (100 Hz) synchronized with 7-axis IMU suits, generating 2.3TB of .c3d files processed via MATLAB R2022a (Dixon et al., 2017).
- AR Devices: HoloLens 2 units with 60 Hz color updates and 10ms latency.
- Data Collection: 5,760 survey responses via WeChat Mini Programs, 1,440 performance videos, and computer-adaptive cultural quizzes, synchronized to ± 5 ms via NTP timestamps.

Performance was assessed via:

- Technical Accuracy: Positional () errors using a technique to compare movement sequences (dynamic time warping) (Ferguson et al., 2014).
- Cultural Internalization: Color-step recall .
- Learning Efficiency: Skill acquisition rate () via a mathematical fit to model learning progress (exponential decay fitting):
- Cognitive Load: NASA-TLX questionnaires (Chen, 2017).
- Learning Efficiency: Skill acquisition rate ((λ)) via exponential decay fitting:

$$[\epsilon_p(t) = \epsilon_0 e^{-\lambda t}] \quad \text{Eq. (06)}$$

- Cognitive Load: NASA-TLX questionnaires (Chen, 2017).

Data validation involved triangulation with three certified adjudicators, statistical analysis using ANOVA with Tukey post-hoc tests, and cross-validation with a subset of 30 participants to ensure reliability. The dataset was processed through a custom pipeline to align motion, survey, and video data, ensuring consistency.

3. Results and discussion

The Culturally Augmented group reduced positional error (ϵ_p) by 32.7% ($p<0.001$) compared to Traditional BOPPPS (12.4 ± 1.2 cm vs. 8.3 ± 0.7 cm) and 18.4% versus Western Color-Coded ($p=0.003$). Temporal error ϵ_t improved to 0.28 ± 0.03 s (vs. 0.41 ± 0.05 s traditional). Skill acquisition rate λ was 64.3% higher, supporting cognitive load theory's prediction of reduced processing demands (Cook, 2006).

Table 1.

Comparative technical performance.

Metric	Traditional	Western	Culturally Augmented
Positional Error (cm)	12.4 ± 1.2	10.1 ± 0.9	$8.3 \pm 0.7^*$
Temporal Error (s)	0.41 ± 0.05	0.35 ± 0.04	$0.28 \pm 0.03^*$
Skill Acquisition Rate ((λ))	0.14 ± 0.02	0.18 ± 0.02	$0.23 \pm 0.03^*$

*Significant ($p<0.01$, ANOVA with Tukey post-hoc).

The experimental results demonstrate the efficacy of the Color-Coded BOPPPS framework in enhancing Chinese ballroom dance instruction. The Culturally Augmented group achieved a 32.7% reduction in positional error compared to the Traditional BOPPPS group, with mean errors of 8.3 ± 0.7 cm versus 12.4 ± 1.2 cm ($p<0.001$), and an 18.4% improvement over the Western Color-Coded group ($p=0.003$). Temporal error in complex Waltz sequences was reduced to 0.28 ± 0.03 s, compared to 0.41 ± 0.05 s for Traditional BOPPPS and 0.35 ± 0.04 s for Western Color-Coded. The skill acquisition rate, measured through exponential decay fitting, was 64.3% higher in the Culturally Augmented group, reflecting faster mastery of movement patterns. These outcomes align with cognitive load theory, which predicts that visual coding reduces extraneous processing demands, enabling more efficient motor learning (Cook, 2006).

Cultural internalization was significantly stronger in the Culturally Augmented group, with color-step recall accuracy reaching 87.3%, compared to 52.1% in the Western Color-Coded group ($p<0.001$). Emotional resonance in Tango sequences improved by 23.5%, as students reported stronger connections to the dance's passionate narrative when guided by culturally resonant colors like red. This supports symbolic interaction theory, which emphasizes the role of culturally meaningful symbols in enhancing learning experiences (Aksan et al., 2009). The steeper learning curve in cultural recall highlights the advantage of Chinese-specific color mappings, which maintained engagement throughout the 12-week study, unlike generic colors that plateaued after six sessions.

Cognitive load, assessed via NASA-TLX questionnaires, was 28.4% lower in the Culturally Augmented group ($p=0.002$). Subjective feedback indicated that 89% of participants found the color cues "intuitively meaningful," compared to 47% in the Western group, and 76% reported self-correcting alignment issues using AR feedback without instructor intervention. This mirrors findings from calligraphy education, where semantically rich feedback enhances motor learning efficiency (Shichinohe et al., 2010). The real-time modulation of AR projections allowed students to focus on movement execution, fostering autonomy and reducing reliance on verbal corrections.

Analysis of BOPPPS phases revealed distinct advantages. The Bridge phase, using historical footage with CSMM-aligned color filters, improved cultural context recall by 41% ($p=0.008$), grounding students in Chinese aesthetic traditions. Pre-assessment color-matching tasks proved predictive of skill acquisition, with a correlation of $r=0.72$ (a measure of how strongly two variables are related) ($p<0.001$), serving as a diagnostic tool for cultural literacy. During Participatory Learning, AR projections reduced the need for corrective feedback by 62%, enabling students to concentrate on refining their movements. Post-assessment motion replays, displaying color gradients to indicate deviation magnitude, enhanced error detection sensitivity, with a d' value of 2.31 (a signal detection measure of sensitivity) compared to 1.67 in controls. The Summary phase reinforced learning through reflective exercises, solidifying color-step associations.

An ablation study (a test removing components one by one to assess their impact) with 60 additional participants clarified the contributions of individual components. Cultural weighting in the CSMM accounted for 22% of technical improvements, reflecting the importance of culturally resonant cues. The structured BOPPPS framework enhanced cultural recall by 41%, underscoring its role in organizing learning. Dynamic AR feedback contributed 35% to error reduction, highlighting the value of

real-time visual cues. These findings demonstrate the synergistic effect of combining pedagogical structure with culturally adaptive technology, creating a cohesive and effective learning experience.

Longitudinal retention, assessed three months post-study, showed the Culturally Augmented group maintained a positional error regression of 12.7%, compared to 28.4% for Traditional BOPPPS, and retained 91% of color-step associations, versus 67% in the Western group. This durability suggests that culturally grounded color cues act as cognitive anchors, facilitating long-term movement recall, consistent with dual coding theory (Aksan et al., 2009). The framework's ability to sustain both technical and cultural learning outcomes positions it as a robust tool for dance education.

The framework's two-way design encodes dance movements into meaningful colors and decodes feedback to improve performance, creating a positive learning loop. The CSMM's grounding in Chinese aesthetics enhances emotional engagement, as evidenced by improved resonance in Tango sequences. The integration of AR with BOPPPS phases provides a structured pathway from cultural awareness to technical mastery, addressing limitations in traditional methods that treat cultural elements as decorative (Yan & Chiou, 2021). The framework's success supports an expanded view of embodied cognition, where cultural semantics are integral to motor learning, as shown by stronger brain activity in movement-related areas (basal ganglia) during culturally meaningful tasks (MacIntosh et al., 2007).

Despite its strengths, the framework has limitations. The fixed CSMM mappings may not account for regional variations in color symbolism, with 14% of participants noting that some historical associations felt "overly traditional" for modern ballroom contexts (Han, 2024). AR projection challenges in high-ambient-light environments reduced color discriminability during outdoor sessions, necessitating environmental controls. Over-reliance on color cues, observed in 8% of participants, could hinder internalization of movements without visual scaffolding, a concern noted in cognitive apprenticeship models (Shen, 2023). Future research could explore adaptive CSMM algorithms using machine learning to reflect regional and generational preferences, incorporate haptic or auditory feedback to reduce dependency on visual cues, and investigate cross-cultural applications, such as using bridge colors to teach Western dances to Chinese students. Ethical considerations, particularly biometric data privacy from motion capture, require robust protocols, including anonymization and informed consent (Pereira, 2020). These advancements could further bridge technical and cultural dimensions in dance pedagogy, with broader implications for skill acquisition theory.

4. Conclusion and policy implications

The Color-Coded BOPPPS framework represents a significant advancement in Chinese ballroom dance education, achieving a 32.7% reduction in positional error and 87.3% color-step recall accuracy. The framework combines technical skills with cultural knowledge by using Chinese color symbolism in the structured BOPPPS model and augmented reality (AR) for real-time feedback. It works because it lowers the cognitive load while encouraging emotional and cultural engagement, which leads to talented performers who are also culturally knowledgeable artists. The framework's capacity to work throughout all BOPPPS phases makes for a unified learning experience that respects the relationship between movement, meaning, and cultural identity. This sets a new standard for how to teach dance.

This framework gives Chinese education policymakers a plan for arts education that is sensitive to different cultures. Adding visual-semantic tools like the CSMM to national dance curricula would put cultural literacy on the same level as technical abilities, keeping China's aesthetic history alive in modern times. Putting AR-equipped studios in colleges and institutions would make it easier for people to use them, which would lead to new ideas in arts education and keep students interested. Professional development programs should teach teachers how to use AR in the classroom, with a focus on culturally relevant feedback to make learning easier and more effective. National rules on anonymization and informed permission are needed to protect privacy when dealing with ethical issues, especially when it comes to motion capture data (Pereira, 2020). These measures align with China's cultural policy goals to promote traditional aesthetics, positioning the country as a leader in culturally responsive education. Future longitudinal studies could validate the framework's impact on artistic expression and cultural preservation, ensuring its enduring relevance across movement disciplines.

Ethical Considerations

This study adhered to ethical guidelines approved by the institutional review boards of the participating universities. All participants provided informed consent prior to involvement, with detailed explanations of the study's purpose, procedures, risks, and benefits. Consent forms emphasized voluntary participation and the right to withdraw at any time without repercussions. Data privacy was prioritized: motion capture and biometric data were anonymized using unique identifiers, stored on secure servers with encryption, and accessible only to authorized researchers. Protocols complied with China's data protection regulations, ensuring no personal information was shared without consent. Post-study, data will be retained for five years for verification purposes before secure deletion (Pereira, 2020).

References

Aksan, N., Kisac, B., Aydin, M., & Demirbuken, S. (2009). Symbolic interaction theory. *Procedia-Social and Behavioral Sciences*, 1(1), 902–904. <https://doi.org/10.1016/j.sbspro.2009.01.160>

Chatfield, S. J. (2009). A test for evaluating proficiency in dance. *Journal of Dance Medicine & Science*, 13(4), 108–114.

Chen, S. (2017). The construct of cognitive load in interpreting and its measurement. *Perspectives*, 25(4), 640–657. <https://doi.org/10.1080/0907676X.2016.1277337>

Chen, Y., Mao, Q., Huang, X., & Xu, N. (2024). LanternOperAR: A hybrid cultural gift for quality education and family well-being. In *Extended Abstracts of the CHI Conference on Human Factors in Computing Systems* (pp. 1–7). ACM. <https://doi.org/10.1145/3613905.3651053>

Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. *Science Education*, 90(6), 1073–1091. <https://doi.org/10.1002/sce.20164>

De Valois, R. L., & De Valois, K. K. (1997). Neural coding of color. In *Readings on Color* (pp. 103–130). MIT Press.

Fei, L. (2024). Application of BOPPPS model in lesson planning of college English for students of art institutes. *International Journal of New Developments in Education*, 6(1), 12–18.

Ferguson, S., Schubert, E., & Stevens, C. J. (2014). Dynamic dance warping: Using dynamic time warping to compare dance movement performed under different conditions. In *Proceedings of the International Symposium on Performance Science* (pp. 247–252).

Gao, X. P., Xin, J. H., Sato, T., Hansuebsai, A., Scalzo, M., Kajiwara, K., ... Billger, M. (2007). Analysis of cross-cultural color emotion. *Color Research and Application*, 32(3), 223–229. <https://doi.org/10.1002/col.20321>

Garcia, A. A., Jr., Semken, S., & Brandt, E. (2020). The construction of cultural consensus models to characterize ethnogeological knowledge. *Geoheritage*, 12(2), 1–14. <https://doi.org/10.1007/s12371-020-00453-6>

Gong, X., Tao, W., & Ma, Y. (2025). CalliSense: An interactive educational tool for process-based learning in Chinese calligraphy. In *Proceedings of the International Conference on Human-Computer Interaction* (pp. 1–8). Springer.

Han, S. (2024). Color system based on utilizing traditional Chinese color system context and symbolic significance. *Hanyang University Repository*. <http://repository.hanyang.ac.kr/handle/20.500.11754/190123>

Jendan, J., & Lee, Y. S. (2012). A comparative study on the colors of Chinese traditional costume in Tang, Song, Yuan, Ming, and Qing Dynasty. *Journal of the Korea Fashion and Costume Design Association*, 14(3), 45–56.

Liu, X. Y., Lu, C., Zhu, H., Wang, X., Jia, S., Zhang, Y., ... Zhang, W. (2022). Assessment of the effectiveness of BOPPPS-based hybrid teaching model in physiology education. *BMC Medical Education*, 22(1), 217. <https://doi.org/10.1186/s12909-022-03269-y>

MacIntosh, B. J., Mraz, R., McIlroy, W. E., et al. (2007). Brain activity during a motor learning task: An fMRI and skin conductance study. *Human Brain Mapping*, 28(12), 1209–1226. <https://doi.org/10.1002/hbm.20351>

Pereira, A. C. (2020). Ethical challenges in collecting and analysing biometric data. *Repositorio Iscte Iul*. <http://hdl.handle.net/10071/20485>

Schlagenhauf, F., Sreeram, S., et al. (2018). Comparison of kinect and vicon motion capture of upper-body joint angle tracking. In *2018 IEEE 14th International Conference on Control, Automation, Robotics and Vision* (pp. 1–6). IEEE. <https://doi.org/10.1109/ICARCV.2018.8581092>

Shichinohe, T., Yamabe, T., Iwata, T., et al. (2010). Augmented calligraphy: Experimental feedback design for writing skill development. In *Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction* (pp. 301–304). ACM. <https://doi.org/10.1145/1935701.1935771>

Siyao, L., Yu, W., Gu, T., Lin, C., Wang, Q., ... Hu, Y. (2023). Bailando++: 3D dance GPT with choreographic memory. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(12), 14192–14207. <https://doi.org/10.1109/TPAMI.2023.3314412>

Soltani, P., & Morice, A. H. P. (2020). Augmented reality tools for sports education and training. *Computers & Education*, 155, 103923. <https://doi.org/10.1016/j.compedu.2020.103923>

Vassileva, B. (2024). Code-switching in choreography. *Orpheus Noster A Kré Eszme Kultúr És Művészeti Folyóirat*, 16(1), 45–60.

Wang, K. C. (2002). The five elements theory in business research. In *Proceedings of the 46th Annual Meeting of the Systemic Administration and Business Institute* (pp. 123–130).

Warburton, E. C. (2019). Dance pedagogy. In *The Bloomsbury Companion to Dance Studies* (pp. 79–104). Bloomsbury Academic. <https://doi.org/10.5040/9781350024489.ch-003>

Yan, W. J., & Chiou, S. C. (2021). The safeguarding of intangible cultural heritage from the perspective of civic participation: The informal education of Chinese embroidery handicrafts. *Sustainability*, 13(9), 4958. <https://doi.org/10.3390/su13094958>

Yang, F., & Lin, J. (2016). A Chinese Tai Chi model: An integrative model beyond the dichotomy of student-centered learning and teacher-centered learning. *Asian Education Studies*, 1(2), 1–10.

Yue, Y. F., & Chen, Y. Y. (2022). Blended teaching designs based on BOPPPS model in multicultural classroom. In *EDULEARN22 Proceedings* (pp. 1234–1240). IATED. <https://doi.org/10.21125/edulearn.2022.0321>